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Evaluation Index of Energy System

1. Cogeneration vs. Grid Power + Heat Pump

2. Well to Wheel Efficiency for FCV
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 Energy Efficiency
 Energy Intensity

Measure of Energy Sustainability

enthalpy basis

 What is exergy loss?
 Exergy Loss per unit Energy/Material Production

 Material Production　kJ/kg
 Energy Production     kJ/kJ

 Minimize the exegy loss through the whole process
 Exergy Recuperation Technology for Coproduction



Energy flow diagram in Japan
Total energy consumption 5.4 x 1015 kcal (1997)
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Energy Conversion and Energy Form
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Exergy rate (Exergy/Enthalpy ratio)
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exergy  A = H − H0( ) − T0 S − S0( )

 
exergy rate  ε =

exergy
enthalpy



Exergy Dissipation in Combustion Process

Exergy dissipation occurs in the combustion process because 

exergy rate of heat is lower than that of fuel.
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Electric Heater vs. Heat Pump
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Energy conversion diagram of electic heater
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Co-production by combination of endothermic and 
exothermic reactions
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Material and Energy Co-production
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Gas Turbine integrated Ethylene Plant

Naptha Craker
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Energy balance of reaction system

enthalpy Hin enthalpy Hout 

raw materials products 

-!H = Hin - Hout = -!G - T!S 

total energy   work   heat 

work heat 

!G T!S 

reaction system 



Exergy loss in exothermic reaction
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Energy conversion diagram of ideal SOFC
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Exergy Loss in Combustion Process
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The principal of reaction splitting
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The Principle of Reaction Splitting

 

Hydrogen combustion   2H2 +O2 → 2H2O
Water gas reaction         C+2H2O→  2H2 +CO2

Carbon combustion        C+O2 → CO2              



Carbon reforming combustion
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Hydrogen combustion   2H2 +O2 → 2H2O
Water gas reaction         C+2H2O→  2H2 +CO2

Carbon combustion        C+O2 → CO2              



Energy conversion diagram of methane combustion
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Energy conversion diagram of methane reforming 
combustion
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Thermochemical cycle for hydrogen production 
as a thermochemical heat pump
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Exergy Recuperation Technology for Combustion

 Thermochemical Recuperation
Thermal energy can be recuperated into chemical 
energy by endothermic reaction

 Heat Recuperation
The equilibrium of combustion reaction can be 
shifted to reactant side by fuel preheating using 
waste heat, leading to the reduction of exergy loss 
during combustion

 Steam/CO2 recuperation
The equilibrium of combustion reaction can be 
shifted to reactant side by recycling the combustion 
products(steam and CO2).  



Energy Consumption & Exergy Dissipation in Chemical Process
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Self-heat Recuperation Technology
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Current Energy and Material Production System
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Future Energy and Material Coproduction System
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The End


