The SynCity Layout model

Exploring the limits of low carbon urban design
University of Tokyo - Imperial College 2nd Joint Symposium on Innovation in Energy Systems
24 September 2009

James Keirstead, Nilay Shah
BP Urban Energy Systems project
Imperial College London

Overview

(1) Introduction
(2) Background: the role of urban form
(3) Model design
(4) The case study

Methods
Sensitivity analysis results
Uncertainty analysis results
Monte Carlo filtering
Sample plots
(5) Conclusion

The BP Urban Energy Systems Project

- A five-year BP-funded project at Imperial (started 2006)

- The ambition:
"to identify the benefits of a systematic, integrated approach to the design and operation of urban energy systems, with a view to at least halving the energy intensity of cities"
- Brings together researchers from process systems engineering, transport and land use modelling, industrial ecology, energy policy, business and innovation studies etc.

Methodological approach and rationale

Most existing approaches to urban energy modelling are:

- data intensive (spatially and temporally)
- context-specific (local geography, prices and constraints)
- problem-specific (i.e. one part of UES design)

Example urban energy modelling studies

- Girardin et al. [2008] estimate spatial patterns of heat demand using GIS
- Mori et al. [2007] match local heat sinks and sources
- Brownsword et al. [2005] combine demand estimation with supply optimisation model
- Bruckner et al. [2003] deeco model for energy systems integration

SynCity

A tool kit for modelling urban energy systems

SynCity consists of:

- A consistent data model (ontology)
- A Java executive and data management system
- Three component submodels: layout, agent-activity, and resource-technologynetwork (RTN)

Major contributors to urban energy use

Urban form \rightarrow Layout model
Behaviour, markets, institutions \rightarrow Agent-activity model
Energy supply strategy \rightarrow RTN model
Network specification \rightarrow Service network model

Major contributors to urban energy use

Urban form \rightarrow Layout model
Behaviour, markets, institutions \rightarrow Agent-activity model
Energy supply strategy \rightarrow RTN model
Network specification \rightarrow Service network model

What determines the layout of a city?

Historically, urban form has been shaped by the following factors
[Morris, 1994]:

Natural determinants

- Topography
- Climate
- Construction materials and technology

Man-made determinants

- Pre-urban land use
- Defence
- Aggrandizement
- The grid iron concept
- Urban mobility
- Aesthetics
- Legislation
- Urban infrastructure
- Social, religious, ethnic grouping
- Leisure

What is the role of urban form?

The energy dimension

Generally speaking, as urban density increases:
'Vertical transport' energy (lifts)
Air-conditioning demand
Feasibility of district heating
in the UK, DH\&C viable from $\sim 60-80$ homes/hectare
Length of infrastructure networks \therefore pumping and costs
Average building envelope area
Natural light and solar gain
Natural ventilation
Transportation fuel demand per capita

Urban density and transport-related energy consumption

Transport-related energy consumption
Gigajoules per capita per year

Model specification

The SynCity layout model is a GAMS mixed-integer LP model

Input data

- SETS: space (inner-city zones, external hinterlands), infrastructures (building types, transport modes and network types), activities
- SCALARS: population, household size, calibration constants
- PARAMETERS: costs (financial, energy, carbon), capacities, distances, constraint thresholds etc.

Model specification

continued...

Objective function

- min "cost" - \$ (capital, operating, total), energy or carbon

Variables

- Location of buildings and activities
- Location of network connections
- Daily trips from zone z to z^{\prime} by mode m
- Convenience variables (e.g. passenger km by mode)

Model specification

continued...

There are multiple constraints on the model including:

Constraints

- All citizens must be housed
- Activity demands of citizens must be provided locally or in nearby hinterlands
- Land use must conform to planning constraints on minimum and maximum areas, excluded zones etc.
- Network capacity constraints
- Only one function per zone

Previous work

Assessing a UK eco-town

	Baseline	Unconstrained	Constrained
	8297	6576	6760
Housing avail- able		100	15
High-density housing (\%)	0	41	64
Relative cost Energy (GJ per cap) Carbon (tC per cap)	100	19.3	52.3

What are the limits of low carbon urban design?

Carbon savings of nearly 80% may be possible but:

- How does uncertainty in the input data affect the results?
- What factors drive these savings?

Explore using global sensitivity analysis [see Saltelli et al., 2008]

- Factor fixing: which parameters have the least influence on the variance of model result?
- Factor mapping: which parameter values lead to desirable results?

Sensitivity analysis

Parameters of interest

Parameter	Distribution	Units
MAX_VISITS	$U(150,48000)$	visits/site
DB_LOW	$U(5,20)$	dw/ha
DB_MED	$U(20,60)$	dw/ha
DB_HIGH	$U(60,130)$	dw/ha
SAP	$U(50,100)$	UK efficiency rating
EN_TRANS	$U(1.5,5)$	MJ/pass-km
CRB_TRANS	$U(0.0107,0.03479)$	kg C/pass-km

Sensitivity analysis

Methods

Sobol' sensitivity indices

- Variance-based method
- Calculates first-order and total sensitivity indices
- Cost: $n(p+2)$ with $n \approx 500-1000$

Morris elementary effects

- Derivative-based "OAT" (one-at-a-time) technique
- Calculates proxy of total sensitivity index
- Cost: $r(p+1)$ with $r=10$

Each layout model run takes about 3-4 minutes.

Morris results

Morris elementary effects
 $$
\mu^{*}=\frac{1}{r} \sum_{j=1}^{r}\left|E E_{i}^{j}\right|
$$
 $E E_{i}^{j}$ is the elementary effect of parameter i for design j

Sobol' sensitivity indices

- parameters: MAX_VISITS and DB_HIGH
- $n=500 \Rightarrow 2000$ runs $\Rightarrow 44$ hours.

The results

Both factors and interaction effects are important.

Uncertainty analysis

Establish a baseline

Carbon emissions $=3.6 \mathrm{tCO}_{2} /$ person

Uncertainty analysis

How do the parameters effect carbon savings?

Uncertainty analysis

Imperial College London

Uncertainty analysis

How do the outputs vary individually?

Uncertainty of key parameters

Uncertainty of key parameters

Uncertainty analysis

How does the solution quality vary with each parameter?

Monte Carlo Filtering

Which values give the desired outcome?

None of the solutions reach the target 50% savings. Why?

- No variation in energy performance of buildings and transport from the baseline
- SAP and TRANS_CRB were less significant factors in Morris EE analysis
What parameter values give the biggest savings? Minimum 30\% versus baseline
- Divide into B and \bar{B} samples
- Kolmogorov-Smirnov test to compare distribution of input parameters in each sub-sample

Smirnov Test results

Distribution of key parameters

Comparison of MAX_VISITS parameter distribution

Comparison of DB_HIGH parameter distribution

Sample layouts

Clustering and village creation

DB_HIGH $=60$, MAX_VISITS $=3200$

DB_HIGH $=130$, MAX_VISITS $=48000$

Sample layouts

The pull of a central service

DB_HIGH $=60$, MAX_VISITS $=3200$ with a central shop

Summary of results

- Key parameters: carbon emissions of an urban area vary primarily with the maximum density of housing (DB_HIGH) and the maximum size of service provision (MAX_VISITS)
- The relationship between these parameters is complex but MAX_VISITS is the most important factor for solution quality and carbon savings.
- Savings of $\sim 30 \%$ are possible from these layout parameters alone

References I

R. A. Brownsword, P. D. Fleming, J. C. Powell, and N. Pearsall.

Sustainable cities - modelling urban energy supply and demand. Applied Energy, 82(2):167-180, 2005.
T. Bruckner, R. Morrison, C. Handley, and M Patterson. High-resolution modeling of energy services supply systems using deeco: overview and application to policy development. Annals of Operations Research, 121:151-180, 2003.
Luc Girardin, Matthias Dubuis, Nicole Darbellay, FranÃğois Marechal, and Daniel Favrat. Energis: A geographical information based system for the evaluation of integrated energy conversion systems in urban areas, 2008.
Yasuhumi Mori, Yukihiro Kikegawa, and Hiroyuki Uchida. A model for detailed evaluation of fossil-energy saving by utilizing unused but possible energy-sources on a city scale. Applied Energy, 84 (9):921-935, 2007.

References II

A.E.J. Morris. History of Urban Form: Before the Industrial Revolution. Prentice Hall, 1994.
A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola. Global Sensitivity Analysis: the Primer. Wiley, 2008.

