25th CEE Symposium with NEDO

Generation scheduling technologies supporting large Introduction of Renewable Energy

再生可能エネルギー大量導入時代を 支える需給運用/計画技術

Oct. 19 2016

Hitachi, Ltd Toshiyuki Sawa

- 1. Backgrounds and Objectives
- 2. Overview of methods for Uncertainties
- 3. UC method using Quadratic Programming
- 4. Proposed method for Uncertainties
- 5. Results
- 6. Conclusions & Future works

1. Backgrounds and Objectives

Back grounds

- Large introduction of PV and WG
- -grounds Reduce Generation costs

Objectives

- Generation Scheduling considering
 - Low generation costs
 - Uncertainty renewable generations

- 1. Backgrounds and Objectives
- 2. Overview of methods for Uncertainties
- 3. UC method using Quadratic Programming
- 4. Proposed method for Uncertainties
- 5. Results
- 6. Conclusions & Future works

2-1. Normal Method: Combination of UC and Demand

Select Optimal Schedule: Estimate each UC for all demands

2-2. Conventional Method: Fixed UC for base Demand

UC is optimal for base demand

2-3. Proposed Method : One Optimal UC for all demands

One optimal UC is calculated by Simultaneous Optimization method

- 1. Backgrounds and Objectives
- 2. Overview of methods for Uncertainties
- 3. UC method using Quadratic Programming
- 4. Proposed method for Uncertainties
- 5. Results
- 6. Conclusions & Future works

3-1. Simultaneous Optimization method for UC and ELD

Simultaneous Optimization using Quadratic Programming

3-2. Formulation for Integrated Unit Commitment

Objective Function: Generation Costs → min

$$F(P,u) = \sum_{t=1}^{T} \sum_{i=1}^{N} C_i(P_{it}, u_{it}) + \sum_{i=1}^{N} SC_i(v_i)$$

$$Fuel Cost C_i(P_{it}) = a_i P_{it}^2 + b_i P_{it} + c_i u_{it}$$

$$Start-up Cost Start-up Cost SC_i(v_i) = v_i S_i$$

$$C_i(v_i) = v_i S_i$$

Newly added Constraints

Thermal UC Variable u_{it} Increasing UC Variable Decreasing UC Variable

 $0 \le u_{it} \le 1$ relaxing binary to continuous $u_{it} \le u_{it+1}$ when demand increasing $u_{it} \ge u_{it+1}$ when demand decreasing

Main constraints

- Generation Capacity and minimum generation
- System demand and supply balance
 Spinning Reserve
- Minimum up and down times
 Transmission Constraints
- LNG Consumption
- Hydro unit power, load limit and reservoir water level

3-3. Quadratic Programming to Apply Problems

Constraints

Thermal UC variables are relaxed from binary to continuous.

$$u_{it} = 0 \text{ or } 1 \qquad \Rightarrow \quad 0 \leq u_{it} \leq 1$$

(Mixed Integer ⇒ (Quadratic

Programming Problem) Programming Problem)

Problem 1: Feasible Operational Unit Commitment

⇒ Thermal units start up or shut down more than once per day.

Problem 2: Converging UC Variables to 0 or 1

 \Rightarrow Thermal UC variables are usually not 0 or 1.

3-4. Measure against Problem 1

1. Adding New Constraints

- A) From minimum to maximum demand time, the value of u_{it} does not decrease, and from maximum to last demand time, that of u_{it} does not increase.
- B) In low demand periods, the value of u_{it} is the same, and in the peak demand periods, that of u_{it} is the same.

3-5. Measure against Problem 2

2. Adding New Penalty Costs to Objective Function

A) New Objective Function

$$RF(P^d, u^d) = F(P^d, u^d) + w^d \sum_{t=1}^{T} \sum_{i=1}^{N} \mu_{it}^{d-1} u_{it}^d$$
 ---(2)

d is iteration number; w^d is penalty weighting factor; μ_{it}^d is average cost of thermal unit iat time t with the d-th iteration.

3-6. Flowchart for generation scheduling

Calculate initial dispatching power and unit commitment using QP in Eq. 2 $(d=0, w^d=0,)$

Calculate per-unit fuel cost μ_{it}^{d} at present dispatching power P_{it}^{d}

Calculate dispatching power and unit commitment using QP in Eq. 2

Decide unit commitment if $u_{it}^d > 0$ then $u_{it} = 1$ (committed) else $u_{it} = 0$

Calculate dispatching power using QP in Eq. 1

Output final generation schedule

- 1. Backgrounds and Objectives
- 2. Overview of methods for Uncertainties
- 3. UC method using Quadratic Programming
- 4. Proposed method for Uncertainties
- 5. Results
- 6. Conclusions & Future works

4-1. Mathematical Formation for generation scheduling

Objectives Generation costs = Fuel costs + Start-up costs ⇒ min

$$F(P,u) = \sum_{j=1}^{L} \sum_{t=1}^{T} \sum_{i=1}^{M} \underline{w}^{j} C_{i}(P_{it}^{j}, u_{it}) + \sum_{i=1}^{N} S_{i}(u_{iP} - u_{iN})$$
(1)

 $C_i(P_{ii}^j, u_{it}) = a_i P_{ii}^{j^2} + b_i P_{ii}^j + c_i u_{it}$: Fuel consumption function

 u_{it} : Operation state variable

 P_{i}^{j} : Generation of Thermal Unit i for Demand curve j

 S_i : Start – up cost

 w^{j} : Weight coefficient for demand curve j

N, P:Times of bottom and peak demand

Constraints

(a) Balance
$$\sum_{i=1}^{M} P_{i}^{j} + \sum_{k=1}^{K} (GH_{k}^{j} - LH_{k}^{j}) = D_{i}^{j}$$

$$D_{i}^{j} : \text{Demand for curve } j \qquad GH_{k}^{j}, LH_{k}^{j} : \text{ Generation power and Pump load}$$

(b) Reserves for increasing and decreasing powers

$$\sum_{i=1}^{N} \left(P_{i}^{\max} - P_{i}^{j} \right) \cdot u_{it} + \sum_{k=1}^{K} \left(GH_{k}^{\max} - GH_{kt}^{j} + LH_{kt}^{j} \right) \ge R_{t}$$

$$\sum_{i=1}^{N} \left(P_{i}^{j} - P_{i}^{\min} \right) \cdot u_{it} + \sum_{k=1}^{K} \left(LH_{k}^{\max} - LH_{kt}^{j} + GH_{kt}^{j} \right) \ge Q_{t}$$

$$P_{i}^{\max}, P_{i}^{\min} : \text{Maximun and minimum powers}$$

- (c) Generation Capacity and minimum generation
- (d) Minimum up and down times
- (e) LNG Consumption
- (f) Hydro unit power and load limit and reservoir water level

4-2. Conditions of Scheduling Problem

Setting Conditions

- Use three demand curves, high, base and low
- ullet Uncertainty renewable generation and demand, $\pm 10\%$ for Base demand
- Reserves for up and down power; ±15% for Base demand

Method		nd and V oefficier	Reserves					
	High	Base	Low					
Conventio	0%	0%	0%	Base±15%				
nal	0.0	1.0	0.0					
Proposed	+10%	0%	-10%	Base±15%				
	0.25	0.5	0.25					

Horizon	24					
Thermal unit	Num.	29				
	Capacity	12,529MW				
	mdt	3				
	mut	5				
Pumped	Num.	1				
-hydro	Capacity	1,000 MW				

 Σ (Weight coefficient)=1.0

mdt: Minimum down-times

mut: Minimum up-times

- 1. Backgrounds and Objectives
- 2. Overview of methods for Uncertainties
- 3. UC method using Quadratic Programming
- 4. Proposed method for Uncertainties
- 5. Results
- 6. Conclusions & Future works

5-1. Conventional method: Using one curve for base demand

Result

Unit Number (Priority order)

Higher priority units are ON except Unit-11 and 20

Time

Capacity (MW)

ON

OFF

5-2. Proposed method : Simultaneous Optimization HITACHI method using three demand curves

Result

Unit Number (Priority order)

Higher priority units are ON except Unit-17

Time

Capacity (MW)

ON

OFF

5-3. Differences of Unit commitments

Difference

Unit Number (Priority order)

Differences of UC are one and two units in bottom and peak times respectively

Other differences are start-up and shut-down time

ON by only Proposed method

ON by only Conventional method

Time

Capacity (MW)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	Capa
6	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	250
7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	600
8	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	600
9	1	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	250
10	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	250
11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	600
12	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	250
13	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	250
14	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	325
15	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	325
16	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	250
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	250
18	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	250
19	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	250
20	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	256
21	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	375
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	600

Bottom

Proposed Conventional

Peak

600мw Unit-11 ON 250мw Unit-12 ON

600mw-11+256mw-20 Units ON 600mw-22+250mw-17 Units ON

5-4. Results: In case of high demand, base + 10%

- 1 All constraints are satisfied in case of 15 % reserve for base demand.
- 2 Final water level < Target level Power [kW] can balance at each time but not energy [kWh]
- 3 Compensation costs are added to raise target water level
 Average unit cost × △Water Level
 [k¥/kWh] [kWh]

5-5. Comparison of Generation costs

 Expected generation costs of proposed method are 0.233 % less than that of Conventional method.

Costs are normalized by generation costs of Conventional method

Costs	Generation	Fuel	Start-up				
Conventional	100.000	99.249	0.751				
Proposed	99.767	99.140	0.627				
Reduction (%)	0.233	0.110	0.123				

	Start-up Units
Conventional	256MW, 600MW
Proposed	250MW, 600MW

- 1. Backgrounds and Objectives
- 2. Overview of methods for Uncertainties
- 3. UC method using Quadratic Programming
- 4. Proposed method for Uncertainties
- 5. Results
- 6. Conclusions & Future works

6-1. Conclusions

- Generation Scheduling method has been developed for uncertainties such as large introduction of renewable energy.
 - Using Quadratic Programming
 - Solving simultaneously UC and ELD
- Simulation results from proposed method show
 - Satisfy all constraints
 - Reduce generation costs by 0.233%.
- Pumped-hydro as energy storage system is important for uncertainties to keep not only kWpower balance but also kWh-energy balance.

6-2. Future works

- Simulate and estimate more realistic cases considering
 - Uncertainties for each time dependent
 - Network constraints

Thank you for your kind attention!

